SAMPLE COMPANY

AI(人工知能)と経営

AIによる物体認識と通行人数カウント

 プライバシー保護のために人物は塗りつぶして、通りを歩く歩行者の人数をAIがカウントしている様子です。人Personの他にも車car、自転車bicycle等、機械学習によって様々な物体を認識することが出来ます。AIを使って24時間265日、毎時刻毎に、年齢や性別も自動認識して人数をカウントすれば、AI時代のマーケットデータになります。

AI NG
 この技術は例えば店舗に設置すれば、一年中の通行人の数を自動的にカウントすることが出来るため、天候や通行人数等と、過去の売上金額を分析して、未来の売上の高精度AI予測が可能になり、店員や仕入数の最適化やSDGsのフードロス問題にも貢献し、かつ処分焼却にかかる温室効果ガスの排出削減にも貢献できます。

eye_tracker

プロのベテラン技師による目視評価を、定年後にはAIで自動化

 例えばコンクリートのひびを例にしますが、現場では経験豊富なベテランが目視による劣化の評価をしています。しかし数年後には定年を迎えるために、その技術伝承にAIの機械学習が最適です。過去の膨大な評価データを機械学習を利用すれば、AIが即座にベテランと同じ評価をする事ができます。下記はAbnormalが亀裂を検出し、Normalが亀裂無しを示しており、カッコ内はAIの判断が示されています。例えば図中の0.76_Abnormaは76%の確率で亀裂ありAbnormalを示し、亀裂無しはNormalとなります。

eye_tracker
eye_tracker
 下側の画像はAIが参照していない部分は青で、評価に利用した場所を明るい色を付けて表示させています。通常のAIはブラックボックスですが、これによってその判断をした場所を根拠として示す事が可能です。

AI_Pose1

AIによる犯罪検出と未然防止

 各店舗には防犯カメラが設置されていますので、これにAIを導入する事で万引きなどの犯罪行為を自動検出できます。図はAIによる画像認識で、緑の丸い点は、手やひじ、肩等を示しており、その座標をリアルタイムに計測出来ます。この座標を使って動作解析してモデル化することで犯罪を自動検出する事が可能になります。

AI_Pose2

 人間が目視でカメラ映像を24時間365日見て確認するのは大変ですが、AIで自動検出して警告音を出したり、通知すれば店長さんやセキュリティーセンターの仕事も減り、自動化できるでしょう。また犯罪だけでは無く、人が急に具合が悪くなってうずくまったり、倒れた際も検出が可能です。将来的には道路やビルや駅の防犯カメラにAIを導入して、救急が必要な時や犯罪を未然に察知して本人への抑止のためのサイレンを流し、同時に警察や防災センターへ通知するようにして、人間を守るためにAIを役立てたいと考えています。

自動ロボット倉庫の最適問題

 これは自動ロボット倉庫のロボットの数や荷物の配置場所などを最適化した時のシミュレーションの様子です。単なるコンピュータ上の描画では無く、研究成果のアルゴリズムを実際の制御システムに導入し、同じ入出荷データを適用しているので、実物と全く同じ動作をしています。この問題でもデータサイエンスやAIを活用して、過去の膨大な入出庫のビックデータに基づいて最適配置を求める事ができます。

eye_tracker

物流倉庫の最適配置問題

 ロジスティクスやサプライチェーン・マネジメント(SCM)の分野では、遺伝的アルゴリズム(GA)による、グローバルな視点で物流センターやハブの最適配置問題を扱っています。

eye_tracker eye_tracker
 上の図は、実際の地域の配送センターの最適配置問題をGAで解いた例で、左側が最初にランダムにグループ分けを行なった状態です。それをGAで世代交代を繰り返して、各営業所と物流センターのトンキロ(荷物量×距離)が最小になる組み合わせを探索して得られた最適配置結果が、右側の図のように得られます。

structure

構造設備のAI自動判定システム

 ベテラン技術者が目視で行っていた構造設備の劣化評価を、機械学習によりAIが自動判断を行った例です。これによって、多くの経験や知識を必要とせずとも、該当部分をスマホで写すだけでAI評価が出来るようになります。

AI_judgement
 またシステム化する事で、写真もサーバーへ自動転送すれば、人間が毎回手作業で写真の保存や整理をしていた作業が必要無くなり、大幅な作業効率化が実現出来ます。

eye_tracker eye_tracker

AIによる太陽光発電量予測

 これは企業との共同研究で、太陽光発電の発電量の予測にAIを活用するもので、地上から天体撮影用カメラを使って一定間隔で自動撮影し、太陽は除外して雲部分(画像では緑色に着色)のみをプログラムで自動抽出する例です。

eye_tracker

物体認識・セグメンテーション

 左上が入力画像で、右側にInstance SegmentationというAI技術によって認識された人やトラックを四角い枠で示して種類を表示し、さらにその形状に合わせて色で塗りつぶしています。左下も同じ手法でその枠を取って色だけにした結果です。そして右下が別の手法でPanoptic segmentationを使って全てのピクセル(画素)が何に分類されるかを示した結果で、天井や壁、道路も識別されています。これらの技術は人が立ち入ってはいけない場所の24時間監視システム等に応用できますが、この他にもこの技術は自動運転や医療の画像分析、品質検査など、過去には人が目視で行って来た業務を自動化する事が出来ます。

設備点検における錆のAI評価

 錆の評価は設備保全やリスクマネジメントにおいて非常に重要であり、熟練の技術者による目視が行なわれて来ました。しかし定年の問題で熟練者から若手技術者への技術伝承が間に合わず、過去の膨大な評価結果と写真を基に、企業とAIによる自動評価の共同研究を行っています。

Rust_Confusion.jpg
Rust_Confusion.jpg

 上の写真は左が基の写真で、評価したいのは金属の取付器具の部分のみです。右の図はGrad-CAMを利用してAIがどこを見ていたかを赤く表示したものです。後ろのコンクリートの壁や、他の器具など関係の無い部分も多いのですが、AIは金属の器具のみを参照して評価している事が確認できます。

Rust_Confusion.jpg
 上の図は、CNNやResNETを利用した評価結果の混合マトリックスで、新しいモデルではAIの認識精度が向上している事が示されています。

参考文献

・安原, 平田, 豊谷, "全天空画像から抽出した雲情報を用いた LightGBMによる日射量予測精度の向上と考察", 日本情報ディレクトリ学会誌 21, p,70-77, 2023年3月
・植村, 豊谷, 間田, "CNNを用いた階段認識とデプスカメラを用いた段差検出", 日本情報ディレクトリ学会誌 21, p.78-87, 2023年3月
・平田, 安原, 豊谷 他, "太陽遮蔽イベントにおける日射量に影響する天空特徴量の抽出", 日本情報ディレクトリ学会誌 21, p.127-136, 2023年3月
・行木,植村,豊谷 他,”トンネル照明灯具の腐食・損傷分類におけるCNNとResNetモデルの比較検討”,日本情報ディレクトリ学会 ,日本情報ディレクトリ学会誌Vo.22(掲載予定), 2024年3月
・森,大前,豊谷 他,"機械の荷卸・据付に必要な作業用車両の台数自動推定に向けた決定木の構築と要因分析",日本情報ディレクトリ学会 ,日本情報ディレクトリ学会誌Vo.22(掲載予定), 2024年3月 ・天空カメラ画像からの色識別による雲抽出と日射量の変動に関する研究,大竹・豊谷他,情報処理学会研究報告 IPSJ SIG Technical Report Vol.2021-IS-158 No.3,2021年12月
・天空カメラ画像からの AI による雲の移動検出,佐光・豊谷他,日本大学生産工学部第53回学術講演会5-34,2021年12月
・AIを活用したHRテクノロジーと人材育成,豊谷他,情報処理学会第81回全国大会,講演論文集,6J-05,平成31年3月
・AIによる店舗の自動グループ分け問題,日本情報ディレクトリ学会第22回全国大会,研究報告予稿集,p.19-20,平成30年 8月
・ソフトウェア開発のAIによる品質管理,豊谷他,情報処理学会第80回全国大会,講演論文集,2B-02,平成30年3月
・社内管理業務におけるAIの適用,豊谷他, 日本情報ディレクトリ学会第21回全国大会,研究報告予稿集,p.73-74,平成29年 9月
・AIを導入したソフトウェア開発の品質管理, 豊谷他,情報処理学会第79回全国大会,講演論文集,6A-01,平成29年 3月
・A Study on Consolidated Optimal Stock Locations for lmport and Export Freight Flows in Thailand, Sarinya Sala-ngam, Yataka Karasawa, Jun Toyotani et al., International Journal of Logistics and SCM systems, Vol.9, p.71-81,2016年9月
・グローバルハブネットワーク構築の最適立地選定に関する研究,サリンヤア,豊谷他, 日本大学生産工学部 第46回学術講演会 5-38,平成26年12月
・タイにおける郵便システムの最適化問題,サリンヤア,豊谷他, 日本ロジスティクスシステム学会第18回全国大会予稿集, p.51-54,平成26年7月
・SCM戦略論の基本的研究と戦略フレームワークの提案,陳,唐澤,若林,井上,生島,豊谷,日本ロジスティックスシステム学会誌, 14/ 1, p.59-99, 平成25年12月
・3PLの歴史的発展と展望,唐澤,相浦,若林,豊谷,日本ロジスティックスシステム学会誌,11/ 1, p.65-90, 平成23年8月
・Optimum Position in Office of Delivering Using Guide API,Toyotani et al.,JOURNAL OF THE JAPAN SOCIETY OF LOGISTICS SYSTEMS,11/ 1, p.91, 2011年8月
・集配達利用データとGISおよびAPIを利用した宅配営業所の再配置問題,豊谷他,日本ロジスティックスシステム学会誌, Vol.10, no.1, pp.3~10,平成22年
・WebサービスAPIによる情報ディレクトリとマッシュアップ技術,豊谷他,日本情報ディレクトリ学会誌, Vol.7, pp.13~pp.18,平成22年  他
研究者データベースresearchmap